
Forward Blocks
On-chain/settlement capacity increases without the hard-fork

Mark Friedenbach
mark@friedenbach.org

Abstract— Segregated witness achieved a 2 to 3.6x capacity
increase for on-chain settlement by moving script and signature
data out of the area constrained by the original 1 MB block
size limit. Unfortunately this approach could only be used to
achieve a one-time increase as there is no remaining unsigned
transaction data of significant size that could be moved out of
the transaction structure.

The previously proposed concept of soft-fork extension blocks
involves entire transactions being moved into segregated data
structures, which allows for limitless scaling at the cost of
breaking the transaction graph. Alternatively simply removing
or replacing block-size and other aggregate limits preserves the
transaction graph but at the cost of a hard-fork cutoff event,
and the significant transition risks and centralizing pressure
that comes with any scheduled hard-fork event.

We introduce the concept of forward blocks which combine
the best of both approaches enabling aggregate block limits on
size and number of signature operations to be circumvented
as a soft-fork, while preserving the property that the spend
graph, including all transactions and their witnesses, is seen by
legacy clients. Effective block sizes of up to 14.336 GWe can be
achieved in this way, permitting scaling up on-chain/settlement
transaction volume to 3584x current levels, if permitted by the
new consensus rules.

The construction of forward blocks also makes possible
changing the proof-of-work algorithm in a soft-fork compatible
way, either simultaneously with dropping the aggregate limits
or as a later re-application of the concept in nested forward
blocks. Other benefits of the implementation approach taken
include the introduction of explicit sharding for better scaling
properties, rebateable fee market for consensus fee detection,
and smoothing out drops in miner subsidy. It also provides the
necessary prerequisite protocol pieces for confidential trans-
actions, mimblewimble, unlinkable anonymous spends, and
sidechains.

I. INTRODUCTION

The bitcoin block chain has per-block aggregate limits
that prevent the on-chain settlement capacity from increasing
beyond fixed levels of 4 MWe per 10 min in expectation.
While segregated witness achieved a 2 to 3.6x improvement
in settlement capacity by removing witness data from the
area of the block subject to classical limits, this was a
one-time gain: there are no other large areas of the block
that can be safely segregated into their own data structures.
Conventional wisdom is that on-chain settlement capacity of
bitcoin and bitcoin-derived systems can only be increased by
one of four different mechanisms. Taken individually, each
approach comes with significant tradeoffs:

*This work was not supported by any organization.
*This work is licensed under a “CC BY-SA 4.0” license. cba

1) Hard fork change the consensus rules in a way that is
not forwards compatible with old clients, e.g. simply
increasing the weight limit, thereby requiring all nodes
to upgrade by some flag day. While conceptually
simple, the flag day requirement violates many of the
underlying principles of decentralization from which
bitcoin-like systems derive their value.

2) Soft fork validation rules for segregating entire trans-
actions from the classically visible block structure,
in the form of a so-called extension block which
contains extra transactions beyond the classical limit.
While being a soft-fork, this category of solutions has
the disadvantage of opaquely hiding the spend graph
from un-upgraded nodes: in contrast to segregated
witness which merely hid authorization information,
an extension block approach will necessarily obscure
entire transactions, including the inputs they spend
and the outputs they generate from any un-upgraded
client. Some proposals even involve forcing empty
non-extension blocks for the purpose of coercively
shutting down the legacy network, forcing an upgrade
via denial of service. Again, this violates the principles
of decentralization underlying bitcoin-like systems.

3) Soft fork validation rules for transferring value between
sidechains enables scaling to happen on a separate
network using tokens ultimately backed by original
currency from the source chain, e.g. bitcoin. While
sidechains are interesting as a way of locking value
for use in new and novel off-chain ledgers providing
features which are either immature or will never make
it to the mainchain, as a mechanism for scaling it
doesn’t compare well. Either SPV trust assumptions
are required for the value transfer authorization, or
full validation of the other block is required and the
sidechain mechanism becomes essentially an overly
complicated implementation of extension blocks with-
out the empty-block coercion, and inherits all the
same negative tradeoffs regarding ledger opacity to un-
upgraded nodes.

4) Manipulation of timestamps affecting the difficulty-
adjustment algorithm to make blocks more frequent
and thereby indirectly achieve similar results to a block
size increase. Known as the time-warp attack, this
exploit has been used to play out subsidy in various
altcoins going back as far as at least 2011. It has
been noticed by various people that coordinating an
exploitation of this flaw to lower inter-block intervals

https://creativecommons.org/licenses/by-sa/4.0/deed.en

would effectively achieve similar results as a block size
increase in terms of on-chain settlement throughput.
However due to fundamental limitations in latency-
induced message propagation times, and the result-
ing consequences for centralization risk, comparatively
very little gain can be had from using a time-warp
exploit before the risks become unacceptable.

While each of these approaches individually have unac-
ceptable trade-offs, it turns out, remarkably, that combining
them all together “cancels out” most of the bad tradeoffs
wile retaining the combined benefits. The resulting scheme,
held together by a novel new mechanism we call forward
blocks, is actually less complicated than one might think of
a “everything and the kitchen sink” proposal.

Additionally, it was previously considered that upgrading
the proof-of-work function was not possible in an incen-
tive compatible way, and therefore necessarily a hard-fork
alteration of the consensus rules. However implementation
of forward blocks enables, and in fact requires a soft-
fork proof-of-work change1 as natural consequence of its
construction. In fact this insight into accomplishing soft-
fork upgrades of the proof-of-work function is the driving
idea behind the forward blocks construction, and where we
begin the exposition in Section III, after a brief discussion
of centralization risks in Section II.

Taking the concept of a soft-fork proof-of-work change
to its logical conclusion, we develop in Sections IV, V,
and VI a two-chain structure where the forward block chain
establishes a consistent transaction ordering reflected in the
compatibility block chain after a loosely coupled process of
state synchronization.

To actually increase on-chain settlement throughput, Sec-
tion VII describes the approach of directly increasing aggre-
gate limits used on the forward block chain, synchronized
with time-warps to lower the inter-block interval on the
compatibility chain, all constrained by a demand-responsive
and growth-constrained flexible weight cap.

To safely reach scaling limits, Section IX describes how
elements of the sidechain value peg mechanism are used to
enable sharding across multiple forward block chains. Once
fully utilized, an approx. 30x reduction in latency-induced
centralization risk can be achieved.

We then present and justify the set of initial parameters
and long-term growth constraints in Section X.

Finally, it turns out the mechanism developed for trans-
ferring value between shards is generally applicable as a
mechanism for handling coinbase maturation requirements
and transferring value between segregated ledgers. We briefly
examine in Section XI how it can be used to provide a
rebatable fee market for consensus fee detection as well
as handle the transfer of explicit value between confidential
transactions / mimblewimble, unlinkable anonymous spends,
and sidechain ledgers.

1The “new” proof-of-work could be a variation of merged mining,
however, should retiring existing mining hardware be deemed an anti-goal.

II. CENTRALIZATION RISKS OF LARGER SETTLEMENT
THROUGHPUT

Centralization risks in bitcoin are generally concerning for
two reasons: increasing cost of validation and decreasing
censorship resistance.

The cost of validation is the amount of resources (compu-
tation, memory, bandwidth) required to initialize and main-
tain a full-node validator so as to be able to transact on the
network without trusted third parties. Any increase of the on-
chain settlement throughput necessarily incurs an increase
in the cost of validation that is at least linear. In terms of
magnitude, opinions differ but we contend that it would be
largely noncontroversial to require that full node validation
should require no more than the computational resources of
a recent consumer laptop or desktop workstation, and have
bandwidth requirements met by the lesser of a tail-weighted
average of bandwidth available to home internet users or
across onion routing overlay networks with large anonymity
sets.

Censorship resistance is that property which results from
the ability of any user to make a fair attempt at mining
a block, with the chance of success proportional to their
share of the hash rate, no matter how small; censorship being
when another entity is able to unfairly control one’s access
to transact on the block chain, or unilaterally determine
the order in which transactions are allowed to confirm.
Resistance to censorship is achieved by ensuring anyone and
everyone who desires has the ability to mine blocks if they
so choose, and that the probability of finding a block, and
of having that block accepted by the network and not later
reorg’d out, is precisely proportional to one’s share of the
hashpower, no matter how large or small that share is. If
Alice has twice as much hashpower as Bob, then she has
twice as much say into transaction ordering as him, but no
more and no less. And since mining is by lottery, even a
small percentage hashrate miner still has a chance to mine
a block in due time. As the miner of a block determines the
order of transactions contained within, so it is that censorship
resistance is having control over ordering of transactions
shared by all users, fairly weighted by hashpower.

Generally on-chain settlement throughput can be increased
in two ways: by allowing blocks to be mined more frequently,
or by increasing the size of blocks. Both would adversely
affect censorship resistance by increasing the proportion of
time it takes to validate and propagate a block relative to
the time it takes find it, as during propagation and validation
other miners must either generate stale work while they wait
for validation to complete, or open themselves to the risk
of mining on top of an invalid block. Miners don’t have to
make this tradeoff when building on their own blocks (as they
know them to be valid already), which provides an advantage
to larger hashrate miners who find themselves in that lucky
circumstance more often than a less powerful miner would.
Whereas the cost of validation is linear with the on-chain
settlement throughput, the relationship of throughput with
censorship resistance is non-linear and dependent on many

factors.
There is a natural floor to block propagation times due to

fundamental speed-of-light induced message latency, which
limits the effectiveness of lowering the inter-block interval
compared with directly raising weight limits. Therefore low-
ering the inter-block interval is not an effective mechanism
for achieving higher on-chain settlement capacity as the costs
grow rather quickly, and in excess of the benefits received.
We will explore however in Section IV through Section VII a
mechanism by which the benefits of increasing the per-block
weight limit directly can be achieved, while also lowering
the inter-block interval from the perspective of un-upgraded
nodes, without the superlinear effect on centralization risk.

III. CHANGING PROOF-OF-WORK AS A SOFT-FORK VIA
A DUAL-POW DIFFICULTY TRANSITION

Changing the proof of work of an existing chain is nor-
mally thought of as something that can only be accomplished
by means of a hard-fork. However it turns out it is possible to
soft-fork a proof-of-work change while still delivering valid
blocks to un-upgraded clients.

The essential observation is that it is a soft-fork amend-
ment of the consensus rules to make a block subject to
two proof-of-work checks, and that transitioning difficulty
from one to the other is naturally accomplished by a sliding
allocation of block reward. At the beginning of the transition
period the hash rate would remain as before, as nearly all of
the block reward is allocated to the original proof-of-work
miners, but would slowly decrease as dropping rewards drive
miners to wind down operations when profitability limits are
crossed. Simultaneously miners of the new proof-of-work
algorithm would deploy new mining hardware to capture
the increasing amount of block reward available to them.
At the end of the transition the block is still subject to two
proof-of-work requirements, but the original proof-of-work
is at minimum difficulty. During this transition un-upgraded
clients will continue to see blocks produced with ever smaller
difficulty, until the difficulty reaches its minimum value.

In this scenario total-work security would be progressively
reduced for old clients who only see and validate the original
proof-of-work algorithm, but this degradation of security will
occur over a period of years, be visible in reduction of
hashrate, and full security could be restored for any node
at any time by upgrading at their convenience. Centraliz-
ing mining incentives would emerge rather rapidly as the
reward is reduced for the set of old-PoW miners, but we
will show that this has no adverse effects on censorship
resistance in our scheme. For the new-PoW mining network
a decentralization-inducing growth of subsidy provides some
measure of protection for the duration of the transition
period.

As stated so far, there remains the problem of providing
the mechanism by which the sliding block reward is shared
between the two sets of miners in a dual-PoW setup where a
single block is subject to both proof-of-work requirements.
This requires some level of coordination between both sets
of miners, and the more coordination that is required the less

decentralized mining can be. The solution we adopt instead is
to have separate block chains with loose synchronization of
state, which sidesteps most of the coordination complications
entirely.

A. Merge Mining Is Also a No-Op Proof-of-Work Upgrade

We do not wish to imply that that this proposal is in
any way an adversarial move against the current set of
bitcoin/double-SHA256 miners. The scheme we develop for
performing a proof-of-work upgrade has other desirable
benefits, and the fact that the scheme requires changing the
work function is merely an artifact of how the mechanism
works. Whether switching to a new proof-of-work algorithm
that invalidates existing ASIC investments is desirable is
outside the scope of what is discussed here.

Requiring a proof-of-work “change” a necessary side ef-
fect of the scheme we are developing here. However, that new
proof-of-work algorithm could be double-SHA256 merge
mining, which would be a no-op proof-of-work “upgrade”
as all the same double-SHA256 ASIC hardware in use today
would be able to simultaneously mine both, or at least could
be made to do so with a software or firmware upgrade.

Or the new proof-of-work function could be something
completely different, rendering most existing hardware use-
less once the difficulty transition is complete. Either approach
is permitted by this proposal, and we will make no further
comment on what this choice should be, which is entirely
orthogonal to the adoption of forward blocks as a scaling
solution.

IV. LOOSELY-COUPLED CHAIN DEPENDENCY VIA
“FORWARD BLOCKS”

Rather than have a single block subject to multiple proof-
of-work checks, and all the complications that would arise
from that, we instead propose using a divergent fork of
the original chain where the old-PoW miners look to the
new-PoW blocks for ordering of transactions, and thus a
consistent ledger is maintained. This new chain which forces
the ordering of transactions is called the forward block chain
and we will now build up the core concept in parts.

A. Using a “Forced Hard-Fork” To Change Work Functions

To begin with, consider a hard-fork proof-of-work up-
grade, with no replay protections: at a specified activation
height the new set of miners fork off from the historical
chain, creating blocks conforming to the new proof-of-work
requirement, and carry over the same set of transactions
in their mempool for inclusion in future blocks. The rules
for transaction validation remain the identical to the orig-
inal chain, but any block-level consensus rules—such as
aggregate limits—are free to be changed without regard for
compatibility with existing clients, as forward compatibility
is necessarily broken already.

Now combine this with what has been variously called
“forced hard-forks,” “soft hard-forks,” or “evil forks” [sic]:
a majority of miners on the original chain at the time of the
split refuse to build upon any transaction-including blocks.

This is how the transition begins: a hard-fork chain that
is continuing to mine compatible transactions but using a
new-PoW function, and the original chain mining empty
blocks with valid old-PoW headers but devoid of any user
transactions.

To make sure that blocks continue to be mined on both
chains, the block reward must be made to slowly transition
from the chain continuing the old-PoW to the new at
a rate not much greater than normal variance in mining
income. Old-PoW miners would witness their income slowly
dropping, while new-PoW miners start receiving equivalent
increases in their block rewards. Over time less efficient
old-PoW miners will wind down their mining operations
causing a ramping down of difficulty in proportion to the
reduction in block reward. At the same time, investments in
new-PoW mining hardware to capture the growing share of
block rewards on that chain will drive its mining difficulty
(and security) up.

As the name implies, the forced hard-fork scenario was
designed to force old nodes to upgrade to newer software
versions which understand the new proof-of-work/extension
blocks where transactions actually reside, as otherwise they
are unable to witness any transaction confirm. It is considered
by some to be “safe” because old nodes cannot be tricked into
seeing a differing spend history on the old chain compared
to the new. But sometimes not being aware of transactions
can be just as dangerous as seeing the wrong transactions—
e.g. not seeing a channel closure from old state—and it is
coercive in requiring an upgrade. In the next two subsections
we will explore how we can restore transaction processing
on the old-PoW chain without risking a divergent history.

B. Preventing Double Spends with a Transaction Queue

To restore transaction processing for un-upgraded clients
we alter this “forced hard-fork” setup in the following ways:

1) The coinbase outputs of the new-PoW chain are not
entered into the UTXO set. They serve a purpose that
is explained in Section V, but they are not themselves
spendable in either chain.

2) The coinbase outputs of the old-PoW chain enter the
UTXO set of both chains, after a maturation process
explained in Section IV-C. To be clear, this means a
post-fork coinbase output of the old-PoW chain will
also be spendable on the new-PoW chain after the
maturation process following synchronization of state
between them.

With these changes a transaction valid on one chain is also
valid on the other, and this remains true indefinitely into the
future, so long as a consistent ordering of transactions is used
in both chains.

At this point in the explanation a double spend is triv-
ially not possible because the old-PoW chain lacks any
transactions at all, other than its coinbase, so UTXO set
compatibility may seem an academic concern. But we now
relax this restriction without enabling transaction history to
diverge:

3) The coinbase of the old-PoW chain is allowed to
commit to block headers of the new chain, if doing so
extends the chain of known headers to a more-work tip
of equal or greater height than was previously known
from prior commitments.

4) If at any time a header is buried by N or more further
block headers in the same chain, then the buried header
is locked-in and cannot be subject to a later header
commitment reorg, except by reorg’ing the old-PoW
chain to remove the Nth commitment.

5) Should an attempt be made to commit to a chain of
block headers that would reorg an already locked-in
header or even just remove its locked-in / Nth confir-
mation status, the block containing that commitment
is invalid.

6) Adding an Nth confirmation of a block requires that
buried and now locked-in header reference a valid
block.

Thus full-block validation of the other chain is allowed to
happen asynchronously during the maturation period, while
any block referenced by a locked-in header must be valid.
It also means that a block header commitment could be to
an invalid block, but only so long as that block header never
receives a Nth confirmation—or else the block containing
that Nth confirmation commitment is invalid.

7) Once the old-PoW chain has accumulated N confir-
mations of a new chain block header, resulting in
that new-chain block acquiring “locked-in” status, the
transactions in that block are added to the end of
an first in, first out transaction queue. This queue
is initially empty at the point of activation of the
fork, and transactions are added to the queue after
creation/validation of the block containing the Nth
confirmation commitment, so the earliest a transaction
can appear is in the following block.

8) When the transaction queue is non-empty, and so long
as the queue remains not-empty, new blocks in the
original chain are required to include transactions from
that queue, in order, for as long as the next transaction
in the queue is valid and including it would not violate
aggregate limits for the block.

A transaction will only ever be invalid for reasons of
finality (time-locks or sequence locks) or coinbase maturity,
both being infrequent edge cases2that resolve with time, after
which blocks contain transactions again, pulling from the
queue where the transaction processing stopped.

Observe that we have now restored transaction processing
on the old chain without permitting divergent history, since
the selection and ordering of transactions on the old chain is

2It is possible for a transaction to be temporarily invalid because finality
and coinbase maturity requirements are checked differently on both chains.
As a concrete example, a transaction with a 144-block relative lock-time
must be separated from its input by that many blocks on both both the
original chain and the post-fork chain. If the transaction were to first
confirm exactly 144 blocks after its input on the new-PoW chain, but one
of the interleaving blocks is empty, then the old-PoW chain could process
the interleaving transactions in only 143 blocks. Doing so however would
violate the 144-block relative lock-time.

fully determined by the lock-in of block header commitments
to the new chain, itself an irreversible process within the
context of a single chain history. A large reorg of the new
chain can still be handled, but at the cost of requiring a reorg
of the original chain to a point before the Nth confirmation
of the point of divergence.

Simply put, the miners of the new chain provide a deter-
ministic order of transactions which must be followed by in
the continuation of the original chain after the point of ac-
tivation. The old-PoW miners individually lose their control
over transaction selection, as that is now fully determined by
the most-confirmed-work of the new-PoW chain.3 To prevent
divergent UTXO sets the coinbase outputs of the old chain
are used to collect fees, pay out miners of both chains, and
other purposes requiring coinbase maturation, by a process
explained in Section IV-C and Section V.

The purpose of the new-PoW chain is to provide a transac-
tion ordering which must be used by the old-PoW miners in
the construction of their blocks. For this reason a new-PoW
block called a forward block and the new chain the forward
block chain in analogy to the concept in finance and real
estate of a “forward transaction”—the purchase of a good,
service, or property now at a certain price for delivery on a
fixed future date—or the “forward observer” of an infantry
battalion which scouts in advance the route taken by a unit
on the move. The miners of the new chain are choosing
which transactions and in what order the old-PoW miners
are required to include in their chain, after N confirmations
of the block headers has been achieved in the block header
commitments.

The old-PoW block is called a compatibility block and the
original chain the compatibility chain because it relays, after
some delay, transactions in the already agreed upon order
to non-upgraded clients, and processes coinbase payouts in
a way that would be seen and identically processed by old
and new clients alike.

C. Coinbase Confirmation on the Forward Block Chain

We are now ready to explain how compatibility chain
coinbases enter the UTXO set of the forward block chain,
without which there would be no way for miners of either
chain or recipients of coinbase payouts in general to collect
their due. The mechanism for making coinbases spendable
is a similar set of block header commitments and maturity
rules as was used in Section IV-B to construct the transaction
queue on the compatibility chain, this time on the forward
block chain and with regard to coinbase payouts:

1) The coinbase of forward blocks are allowed to commit
to block headers of the compatibility chain, if doing so
extends the chain of known headers to a more-work tip
than was previously known from prior commitments.
A reorg of no more than N block headers is allowed

3Although when merged mining is used, the old-PoW miners are also the
new-PoW miners.

in the process.4 Only block headers are validated until
the Nth confirmation, at which point block validity is
also required.

2) Once the forward block chain has accumulated N
confirmations of a compatibility block header, that
block’s coinbase outputs are entered into the UTXO
set with an M-block maturity (allowing them to be
spent in M additional blocks after the inclusion of the
N-th block header commitment).

N is a free protocol choice known as the forward-block
settlement period, and M is the coinbase maturity period,
both of which combine to define the total length of time it
takes for a coinbase payout to mature. We use N = 96 and
M = 100 in our implementation.5 Having M greater than
N doesn’t provide any higher level of security, but has the
advantage of not requiring alteration of any existing 100-
block coinbase maturity handling code, at the cost of waiting
only an extra 4 blocks.

We can now construct a complete timeline for what
happens when the new rules are activated:

1) At the time of activation of the fork the forward
block chain splits from the compatibility chain, and
the forward block miners begin minting blocks using
the new-PoW and transactions selected from their
mempools, using possibly different aggregate limits
and other block-level consensus rule changes. The non-
coinbase transactions included in the forward block
chain would be valid on the original chain, in the
counter-factual scenario that the new rules had not
activated (assuming the equivalent block height and
block time for time-locks, the equivalent ordering and
separation for sequence locks, etc.).

2) Simultaneously the upgraded original-PoW miners,
constituting a supermajority of hash power at the time
of activation, begin mining blocks for the compatibility
chain, initially consisting of only a coinbase transaction
which may have zero, one, or more commitments to
new-PoW forward block header(s).

3) As blocks progress on the compatibility chain, forward
block miners include reciprocal commitments in the
coinbases of their own forward blocks to the advancing
tip of the old-PoW compatibility chain.

4) When in either chain knowledge of the other exceeds
N blocks past the point of fork, asymmetrical effects
occur:

a) Once the compatibility chain has added knowl-
edge of a forward chain tip N or more blocks
beyond the point of fork, transactions other than
the coinbase in forward blocks with N or more
known confirmations are added to the transaction
queue in the same order as they were seen in the

4Technically the two separate N parameters used in the compatibility-
block and forward-block settlement periods could be different, but there is
no security benefit for that to be so, and doing so would only add delays
to the maturation process.

5In Section X we recommend 15 min forward block intervals, which
means N = 96 blocks is approximately 1 day.

forward block chain. Starting with the very next
block, compatibility chain miners now reject any
compatibility block which does not draw from
the transaction queue filled by prior blocks, in
the order added, allowing for less-than-full blocks
only when the next transaction in the queue
breaks a finality or maturation rule.

b) Once the forward chain has added knowledge
of a compatibility chain tip N or more blocks
beyond the point of fork, the coinbase outputs
of compatibility blocks with N or more known
confirmations are added to the UTXO set and
become spendable after an M block maturity
period.

For an upgraded wallet, confirmations on the forward
block chain are the only confirmations that matter, as later
confirmation on the compatibility chain is predetermined. For
a non-upgraded wallet there is a perceptible and persistent
delay in confirmation on the original/compatibility chain that
they see, but transactions do eventually confirm and progress
is made. So long as applications are written to gracefully
handle confirmation delays, applications running against pre-
fork versions of the client software will continue to work
during the transition.

V. MANAGING THE SHARED COINBASE PAYOUT QUEUE

A necessary condition for transaction compatibility across
the forward block and compatibility chains is that the forward
block coinbase outputs not enter the UTXO set, as they are
not visible to un-upgraded nodes following the compatibility
chain, and any transactions spending such outputs would be
considered invalid by those nodes. However it is necessary
that forward block miners be able to collect subsidy and fees,
and generally be paid for the work that they do, which is a
hard thing to accomplish when the outputs they have control
over are unspendable.

To solve this problem we provide a mechanism for delayed
cross-chain state synchronization, and use the block reward
on the compatibility chain to pay out both sets of miners.
In doing so we develop a mechanism for synchronizing
state across chains or separate ledgers generally which we
will reuse in our discussions of sharding in Section IX and
potential future privacy-enhancing extensions in Section XI.
However the best way to introduce this mechanism is through
the one other solution it is designed to solve: providing a
smooth difficulty transition between the old an new proof-of-
work functions which we will cover in Section VI. But first
we cover in this section the basic underlying mechanisms
involved.

Forward compatibility demands that all block reward (sub-
sidy and fees) be processed in the compatibility block chain.
However payouts for both groups of miners are unconnected
to whatever block reward happens to be available to a specific
compatibility block. We resolve this issue by aggregating
block rewards into a common fund that is used to payout
miners on a first-in, first-out basis. Specifically:

1) Forward block miners are allowed a portion of the
subsidy and fees of the blocks they mine. They specify
the desired destination for these funds in the dummy
outputs of their coinbase transactions.

2) Compatibility block miners are allotted a portion of
the remaining block reward from already locked-in
forward blocks. They too specify the desired destina-
tion for their share of the coinbase reward in a special
commitment in their blocks.

The mechanism for dividing block reward between the
forward and compatibility miners is the topic of Section VI.
Suffice to say there is a fair mechanism for determining how
much of the subsidy and fees are allocated to each set of
miners, and the reward made available to compatibility chain
miners—which depends on the stochastic forward block
finding rate—is smoothed out.

When a compatibility block is processed, the desired
outputs of the compatibility block miner are added to a first-
in, first-out coinbase payout queue. The coinbase outputs of
any forward block that achieves its Nth confirmation and
locked-in status is also added to the end of this queue.

The coinbase of the compatibility block is required to pay
out the collected subsidy and fees to outputs pulled from
the payout queue in order. If there is insufficient reward
remaining to process the next coinbase payout, or if the
payout queue is empty, the remaining block reward is carried
forward to cover future payouts. Procedurally:

3) The compatibility block miner commits to their own
outputs, of sum total equal to or less than the output
of the compatibility block reward function R specified
in Section VI. The committed outputs are added to
a payout queue maintained by each validator, before
processing any other miner commitments.

4) The compatibility block miner also commits to a
possibly zero-length chain of headers extending the
known tip of the forward block chain. When a for-
ward block receives its Nth confirmation reported to
the compatibility chain, the forward block’s coinbase
outputs are also added to the same payout queue.

5) The normal block reward that would have been avail-
able for the old-PoW miners if (counter-factually) the
new rules hadn’t activated, plus any carry-over from
the prior block, is used to fund outputs from the queue
in the order added. If at any point there is insufficient
funds to pay out the next output or if the payout queue
is empty, the remaining block reward is put into a
special carry-forward output.

6) Once the compatibility block receives N confirmations
in block headers reported to the forward block chain,
all the outputs of its coinbase except for the carry-
forward output are entered into the UTXO set of the
forward block chain, with an M block maturity period.

7) Once the carry-forward output matures according to
the compatibility block rules, it is spent by a special
miner-generated transaction, the last transaction of the
block in which it became spendable. If there are

still payouts to be made from the payout queue, the
necessary amount of funds are released as “fee” to be
collected in the coinbase and paid out, otherwise the
remaining funds are placed in a carry-forward output
of this transaction to process coinbase payouts of the
next block, or as needed in the future.

Compatibility chain miners are required to process outputs
(meaning, include the payout in the block’s coinbase trans-
action) taken from the payout queue, in order, until one of
three stopping conditions are reached: (1) the payout queue is
exhausted; (2) the block reward and carry-forward balance
combined is less than the next item in the payout queue;
or (3) adding additional coinbase outputs would exceed
aggregate block limits. Remaining funds from the block
reward and carry-forward balance are placed in the coinbase
and last-transaction carry-forward outputs, respectfully.

One final rule settles contention between use of block
space for making coinbase payouts and processing transac-
tions:

8) The coinbase payout queue is processed before miner
commitments or the transaction queue, so the contri-
bution of the coinbase towards aggregate block limits
is known.

The above rules are consensus enforced—blocks are con-
sidered invalid if they do not adhere to all of the above rules.

Now we have the right pieces in place to explain how
mining rewards are claimed by both sets of miners:

1) A forward block is mined, containing a fake coinbase
transaction for the purpose of specifying where the
forward block miner wants their share of the block
reward to go, as well as various other required or
optional commitments.

2) Since the compatibility block reward function R is a
function of the locked-in forward blocks over a specific
period and there is very little cost to including a
forward block header commitment, compatibility min-
ers have incentive to include any valid forward block
headers they know about in their block templates.

3) When a compatibility block is found, its coinbase con-
tains payouts pulled from the front of the queue, and
its own payouts are added to the end of the queue—
both the compatibility miner’s payout preferences and
the outputs of any newly locked-in forward blocks.

4) Desiring to be paid for their prior work, the forward
block miners have incentive to include commitments to
the longest compatibility block chain they know about
in their own block templates.

5) When a forward block is found, the coinbase trans-
actions of any newly locked-in compatibility blocks
enter the UTXO set, subject to the usual 100 block
maturation delay.

By this mechanism both forward and compatibility block
miners receive their pay by adding commitments to each
other’s blocks, maintaining the loosely coupled connection
between the two chains.

VI. A SMOOTH DIFFICULTY TRANSITION BETWEEN
PROOF-OF-WORK FUNCTIONS

Forward blocks and the compatibility chain work together
to provide a smooth transition in difficulty from the old-
PoW algorithm to the new. Achieving this difficulty transition
requires a proportional allocation of reward between old-
PoW and new-PoW miners that adjusts continuously and
slowly enough over time as to prevent network disruption:

1) Forward-block miners are allowed a proportion P ∈
[0,1] of the subsidy plus fees of the their own blocks.
The remaining 1 − P portion is set aside for the
compatibility block miners.
For example, if P = 25% and the subsidy is 6.25 btc
and fees are 1.75 btc, then the forward-block miner is
allowed to put up to 0.25∗ (6.25btc+1.75btc) = 2btc
in the forward block’s non-spendable coinbase outputs.

2) At the point of activation P is assigned a value that is
quite small (almost zero), and the new proof of work
is starts with a minimal difficulty requirement. Over
a sufficiently long period, the value P is increased
slowly and without discontinuity until it is has the
approximate value P = 1.

3) A smoothing filter controller R(tip) takes as input
the compatibility block headers, including locked-in
forward block headers and their coinbase transactions,
and outputs an allowed block reward for each compat-
ibility block. The content of the compatibility block,
including its own forward block commitments, only
affects the reward of future blocks.

The naive solution of having the compatibility block
miners simply fill out the remaining subsidy of the forward
blocks they confirm runs into difficulty with the loosely
coupled connection between the two chains. The inherently
random process of mining blocks means that some com-
patibility blocks will be responsible for confirming multiple
forward block headers whereas others will include none at
all, to say nothing of the perverse incentives this creates for
reorgs. The solution of applying a smoothing filter transforms
the naturally fluctuating supply into a smooth, continuous
reward function to prevent adverse mining incentives, and
has an added advantage of making all portions of the block
except for miner commitments and payout destinations fully
deterministic from prior-block data.

A simple controller that would work is “R(tip) is sum of
compatibility block portions of the block reward of locked-
in forward blocks minus payments already made, scaled
by 1/k” for some suitably large value of k, fixed in the
consensus rules, that puts added variance within the range
of already existing natural mining variance, and with some
initial conditions to prevent block reward discontinuity at the
point of activation.6

6The actual scale factor used should incorporate the current warp factor
Q, as defined in Section VII: 1

kdQe . Incorporating Q as a component of
the scaling factor bounds the increase in variance that would result from a
steadily decreasing inter-block interval caused by an increasing aggregate
weight limit on the forward block chain.

While this serves as an adequate existence proof of a
solution, design of optimal controllers for this application
is a topic deserving its own dedicated treatment, and we
will not do so here. We remain open to the possibility that
better controllers exist and invite more research in this area.
However it is worth noting some design requirements:

1) The sum of the controller outputs over time must equal
the total amount made available to compatibility block
miners as inputs to the controller. The compatibility
block miners must not earn more (or less) than their
fair share.

2) This fairness condition must hold true even if forward
block miners coordinate to control the schedule of
compatibility block income being registered in the
forward blocks (e.g. by including or delaying high-fee
transactions).

3) This fairness condition must hold true even if compat-
ibility block miners coordinate to control the booking
of forward block income by choosing to commit to
forward blocks at certain times.

4) This fairness condition must not be sensitive to other
factors under miner control (e.g. block timestamps, or
block stuffing with miner-generated transactions).

By providing a smooth transition from the regime of P≈
0 to P ≈ 1 over a period of time comparable to hardware
replacement cycles, the loss of reward by old-PoW miners
occurs slowly enough to be planned for and without risk of
sharp discontinuity in hashrate and long block delays, while
still achieving the goal of having the old-PoW be trivial to
maintain (e.g. difficulty 1) at the end of the transition period.

A. Smoothing Out Bitcoin’s Subsidy Schedule

The coinbase payout queue dissociates the block reward
paid out to miners of both chains from the schedule of
subsidy collected on the compatibility chain and used to
process the coinbase payout queue. The reward received by
the forward block miner depends on the block that they
build, and the reward received by compatibility block miners
depends on the history of forward blocks locked-in on that
chain. Neither is necessarily tied to the subsidy-dropping
schedule originally set by Satoshi—the block reward for both
sets of miners is ultimately determined by the forward block
chain, which has no requirement to match bitcoin’s subsidy
schedule:
• If there is greater subsidy on the forward block chain

than the compatibility chain—due to a faster subsidy
schedule or less than expected number of compatibility
blocks—then the coinbase payout queue grows in length
and miners have to wait correspondingly longer to
receive payment.

• If there is less subsidy on the forward block chain
than the compatibility chain—due to a slower subsidy
schedule or greater than expected number of compati-
bility blocks—then the coinbase payout queue may be
processed completely and excess coinage accumulates
in the carry-forward balance.

0 5 10 15 20 25
Time (years)

0

10

20

30

40

50

Su
bs
id
y
(b
itc

oi
n)

Satoshi
Linear Interp.
6 Oct 2018

Fig. 1. Alternative Subsidy Curve

It is certainly not a problem for a carry-forward balance to
exist, even a large one. And while a coinbase payout queue
causes delays in coin maturation, it does not otherwise cause
any other issues for miners or validators. Because of this we
have the freedom to change the subsidy schedule for forward
blocks, so long as:

1) The cumulative subsidy never exceeds the 21×106 btc
total monetary base; and

2) The cumulative subsidy at any given time does not
exceed the bitcoin subsidy schedule by too large a
margin as to cause unreasonable delays in the coinbase
payment queue.

So long as these conditions are met the coinbase payout
queue may vary in size, but will not grow to excess, beyond
what can be handled with a reasonable delay to coinbase
maturation. To prevent unreasonable delays the subsidy curve
for the forward block chain needs to approximately match
the pre-activation subsidy curve, but it need not follow
exactly the same curve as some variance or local deviation
is allowed.7 In particular, it is possible to “even out” the
subsidy curve, and thereby remove the sharp discontinuities
which presently exist, the so-called “halvenings.”

The simplest correction would be to transform the 4 yr
constant subsidy per halving period into a linear reduction
over 8 yr instead, resulting in a smooth subsidy curve without
any discontinuities, as shown in Figure 1. Regions of the
graph for which the original/Satoshi subsidy curve exceed
the linear-interpolation curve are periods of time where the
excess subsidy on the compatibility chain would be banked
in the carry-forward balance. That banked value would be
used to pay out miners in those regions where the original
subsidy value is less than the smoothed approximation.

In this way the dangerously incentive-incompatible “hal-
vening” phenomenon can be removed from bitcoin, resulting
in a continuous and predictable subsidy drop over time.

7Indeed, with the 15 min block times recommended in Section X, the per-
block subsidy schedule would need to be increased 50% if nothing else.

VII. INCREASING THE BLOCK WEIGHT LIMIT WITH A
FLEXIBLE CAP AND A FLUX CAPACITOR

The aggregate block limits of forward blocks are not
restricted to be the same as the aggregate limits enforced
in pre-activation consensus rules (and carried over to the
compatibility chain); both the maximum block weight and
signature operation limits8 can have different values enforced
in forward and compatibility blocks, so long as no single
transaction exceeds the per-block limit of the compatibility
chain. If the forward block consistently has more transaction-
weight than can fit in a compatibility block, transactions
will accumulate for as long as this remains the case; with
larger forward blocks comes increasing pressure on the
compatibility block miners to process the transaction and
coinbase payout queues.

But if the difficulty of the compatibility block chain were
to be lowered, then the same level of network hashrate would
generate more compatibility blocks within a comparable
interval of time. Under normal circumstances this would
cause the difficulty to increase at the next adjustment up to
the requisite level to maintain 599.7 s expected block times.
However a flaw in bitcoin’s difficulty adjustment algorithm
can be used to trigger a difficulty lowering and used again
to prevent any follow-up re-adjustments, thereby increasing
the frequency at which compatibility blocks are found for
as long as the flaw is exploited. This flaw is known as the
time-warp bug: the 2016-block difficulty adjustment interval
is larger than the 2015-block window used to make the
calculation,9allowing for the careful use of bogus timestamps
at the endpoints of this window to arbitrarily adjust difficulty
in either direction up to the maximum adjustment limit of
±4x.

We can combine both of these techniques of (1) increasing
aggregate limits for forward blocks, and (2) decreasing the
inter-block interval for compatibility blocks to achieve a
higher transaction processing throughput, achieving effec-
tively the same results as direct block weight limit increase
on the original chain, but in a soft-fork compatible way. We
will later show that while such an aggregate limit increase
raises validation costs for all nodes, large gains in transaction
processing throughput can be had without increasing other
centralization risks.

A. Initial Parameters of the Forward Block Chain

On activation of forward blocks we are given a one-time
opportunity to alter the block-level consensus rules of the
forward block chain in ways that on the compatibility chain

8Throughout this text we will refer to the block weight limit as the
defining aggregate limit, but we mean both. An increase or decrease of
one limit in a forward block chain would presumably be accompanied by
a proportional increase or decrease of the other limit, or the forward block
chain may forego having a separate sigop limit entirely.

9This is, incidentally, why bitcoin targets approx. 599.7 s block intervals
rather than exactly 10min = 600s:

600s∗ 2015
2016

≈ 599.7s

would require a hard-fork. We specifically recommend two
changes that permit larger transaction processing throughput
without decreasing censorship resistance:

1) Increase the inter-block interval to a larger value than
the original chain’s 10 min / 599.7 s target to reduce the
ratio of network latency to the inter-block interval. We
recommend a value of 15 min / 900 s as a compromise
between transaction processing throughput and utility
(confirmation time).

2) Raise the (initial) forward block maximum weight
from 4 MWe to a recommended value of 6 MWe, per-
mitting approximately the same transaction processing
rate per unit time as the original chain.

Increasing the aggregate block weight limit while si-
multaneously increasing the inter-block interval is a net
gain for centralization resistance even though the on-chain
settlement throughput remains the same. This is because
the fundamental network latency is unchanged, and the net-
work latency portion of block propagation now constitutes a
smaller percentage of the total inter-block time. This permits
a slightly higher forward block weight limit for the same
level of censorship resistance.

The full initial parameters of the forward block chain and
their justification are given in Section X.

B. A Flexible Cap on Forward Block Weight

In the new consensus rules on the forward block chain we
now permit under certain circumstances a larger or smaller
block weight limit, at the discretion of the new-PoW miner
according to the following rules:

1) Forward block miners are allowed to optionally *bias*
their proof-of-work target by up to ±25%. This essen-
tially makes their block between 25% easier and 25%
harder to solve, which implicitly increases or reduces
the miner’s block reward expectation.

2) Biasing the work target has an inverse-quadratic re-
lationship with the adjustment made to the aggregate
weight limit for the block relative to some baseline.
Specifically, for a bias value x = ∆T/T0 (permitted
values of x∈ [−0.25,0.25]), the permitted block weight
w is given by:

w(x) = w0(2x−4x2) (1)

Equation (1) is depicted in Figure 2.
Note that lowering the proof-of-work target, which permits

slightly larger blocks that are harder to find, is asymmetric
with respect to raising the target, which permits much smaller
blocks that are easier to find. A non-linear equation is
required for there to be a fixed optimal value for a given
transaction fee distribution.

The largest temporary block-weight increase that can be
obtained is +25%, with a +25% bias to the proof-of-work
target, whereas the smallest temporary block-weight is−75%
the default value, obtained with a −25% bias.

Critically, this bias adjustment does not affect the represen-
tative work of the block for the purpose of determining the

−0.25 −0.15 −0.05 0.00 0.05 0.15 0.25
Proof-of-Work Difficul y Bias (%)

−0.75

−0.50

−0.25

0.00

0.25

Bl
oc

k
W

ei
gh

 A
dj

us
 m

en
 (

%
)

Fig. 2. Relationship between max block weight and difficulty bias.

most-work chain. A miner cannot “win out” over another’s
block by choosing a higher work bias.

3) Miners provide in their blocks a declared weight,
which must be greater than or equal to the actual
weight of the block under current consensus rules, and
less than or equal to the maximum weight permitted
given their choice of work bias.10

4) Every L forward blocks (we propose L= 2016, approx.
3 weeks), two things happen:

a) The base limit w0 adjusts to the (possibly gain
limited) average of the past L declared weights.

b) The new-PoW difficulty adjusts up or down as
necessary to maintain the 15 min inter-block in-
terval.11

With the above rules, the forward block chain is able
to provide burst transaction processing capacity as needed,
and automatically adjusts its base limits in response to real
demand. Miners are prevented from unilaterally increasing
aggregate limits due to the prohibitive costs they would suffer
directly as a result.

Should the forward block chain be subject to an aggregate
sigop limit, it too could be raised or lowered by a propor-
tional amount. However it is the opinion of this author that
advances in validation speed and the elimination of quadratic
costs have rendered the sigop limit mostly redundant, and as
such the forward block chain should not be subject to an
aggregate sigop limit at all.

C. Processing Larger Blocks on the Compatibility Chain via
a Coordinated Time-Warp

Now that we’ve established how the forward block chain
manages its aggregate weight limit, we can look at how the
compatibility chain adjusts its inter-block interval to achieve

10The declared weight is specified and constrained to a range rather than
being a calculated value for reasons of forward compatibility with future
soft-fork extensions.

11If bitcoin’s difficulty adjustment algorithm is used, the time-warp bug
should be fixed for forward blocks.

a matching transaction processing rate, through coordinated
exploitation of the time-warp bug.

Upon activation, the we grant the compatibility chain new
consensus rules governing its block timestamps:

1) If a compatibility block is not the last block in a
difficulty adjustment period (the block height is non-
zero modulo 2016):

a) If after constructing the block the transaction
queue is empty, no additional rules apply.

b) Otherwise, if the next transaction in the queue is
non-final for reasons of a time-based lock-time
or sequence-lock, the block timestamp is set to
the minimum value necessary to satisfy that lock
condition.

c) Otherwise, the block’s timestamp must be set to
its minimum allowed value, which is one more
than the median of the 11 blocks prior.

The implication of this rule is that so long as compatibil-
ity blocks are full, the timestamps of compatibility block
headers advance no more quickly than one second every
six blocks, until such time as the queue is emptied or the
next item in the queue requires a higher timestamp value.
As the flexible weight limit of the forward block chain is
expanded, the transaction queue will fill up and the difficulty
of the comptibility chain will need to be lowered to keep
up. Making sure timestamps advance as slowly as possible
ensures this can happen.

The mechanism for causing the difficulty adjustment is a
bit more complicated:

2) The compatibility block miner makes a commitment
alongside forward block headers to the aggregate de-
clared weight of the forward block chain up to that
point.12 For the header to transition to locked-in status,
the commitment must match the same values reported
in the forward block chain, or else the compatibility
block containing the Nth forward block commitment
is invalid.

3) Since the block.nTime field now has its value
subject to additional rules when blocks are full, the
compatibility block miner commits to the wall-clock
time in the nLockTime field of its coinbase transac-
tion.13 This commitment is subject to roughly the same
rules that have always applied to the block timestamp:

a) The coinbase nLockTime must be greater
than the median of the past 23 coinbase
nLockTime’s.14

12If sharding is used (see Section IX), there is one aggregate value per
shard chain and the number considered here is the sum of the aggregate
locked-in weight across all shards.

13Implementation detail: the actual commitment would be to
LOCKTIME THRESHOLD plus the zero-clamped difference between
the wall-clock time and the median of the past 11 block timestamps,
or some other calculation which ensures the value is always larger
than LOCKTIME THRESHOLD but less than the median past 11 block
timestamps. The above rules should be interpreted accordingly. Later
references to this field refer to the actual UNIX timestamp, not the
LOCKTIME THRESHOLD-relative encoded value.

b) The coinbase nLockTime commitment must be
no more than two hours ahead of the current wall-
clock time.

4) If a compatibility block is the last block in a difficulty
adjustment period (the block height is zero modulo
2016), then the block’s timestamp is required to be set
according to the following procedure:

a) A ratio Q, the warp factor, is calculated as the
ratio of forward block utilization15to the original
chain’s settlement capacity:

Q =
w

6MWe
(2)

The integer dQe is the same value, rounded up.
b) Using the last 2016×dQe compatibility blocks’

wall-clock timestamp information (the coinbase
nLockTime fields, not the block header times-
tamp), a calculation is made of which proof-of-
work target over that approximately two week pe-
riod would have yielded Q blocks in expectation
every 600 s, the necessary rate in order to process
forward blocks at their present size.

c) The original/Satoshi difficulty adjustment for-
mula is applied in reverse to calculate the block
timestamp which would cause in an adjustment
to the proof-of-work target calculated above.

d) The block timestamp is constrained by clamping
to be no smaller than its minimum allowed value
of one more than the 11 block median time past
from block headers, and no greater than 14400 s
(4 h) beyond the last block’s coinbase committed
wall-clock value.

Together these rules cause the compatibility chain’s block
rate to adapt to whatever the forward block chain’s transac-
tion processing throughput is, while still remaining respon-
sive to changes in its own network hash rate, while also
preventing compatibility block timestamps from being set so
high as to cause a network split due to a future-dated block.

We’ve now covered how (1) the forward block chain
can grow (or shrink) in response to real demand; and (2)
how the time-warp bug can be exploited to adjust the inter-
block interval of the compatibility chain to make sure every
forward-block transaction reaches every node. We look in
Section VIII at what the hard limits are to scaling transaction
processing capacity via this approach.

D. The Centralization Risks of a Flexible Weight Limit

The compatibility chain is restricted to increasing its trans-
action processing throughput by decreasing its inter-block
interval only, though exploiting the time-warp bug. This

14The median-time-past window is doubled to prevent ratcheting forward
of the timestamp as a result of normal variance once compatibility chain
scaling limits are reached.

15Aggregate across all shards, if sharding is used:

Q =
∑

28
i=1 wi

6MWe

increases validation costs for everyone, and adds centralizing
pressure for compatibility miners. Furthermore, decreasing
the compatibility miner’s share of the block reward as part of
the proof-of-work transition provides additional centralizing
pressure so long as the distribution of cheap electricity and
efficient mining hardware remains unequal: as lower block
reward reduces mining profits for everyone, those with higher
costs are driven out of business first, and what remains is an
oligarchy of miners with access to the best hardware, the
cheapest electricity, and/or the largest subsidies.

With the forward block chain we have a choice of chang-
ing the block weight limit, adjusting the inter-block interval,
or both. Increasing forward block weight limit is preferable
to decreasing the inter-block rate because of the non-linear
relationship between inter-block time and centralization risk:
some risks factors relate to block propagation delays caused
by the speed of light, and these risks are independent of
the size of a block. We even go so far as to recommend
lengthening the inter-block time on the forward block chain
in order to achieve a small but important boost in censorship
resistance.

Considered by itself, indirectly increasing transaction pro-
cessing throughput on the compatibility chain by shortening
the inter-block interval proportionally increases the cost of
validation, but does not affect censorship resistance. This
is because the ordering of transactions is fully determined
by the forward blocks, and so with regard to censorship
the distribution of miners on the compatibility chain doesn’t
matter so long as the forward block chain makes progress
independent of the compatibility chain.

More frequent compatibility blocks would be filled by
larger forward blocks, however, and increasing the forward
block size both increases the cost of validation for full
nodes, and harms censorship resistance by disproportionately
favoring large hashrate new-PoW miners. In Section IX we
examine a solution that allows us to make more smaller, more
frequent forward blocks while still maintaining the benefits
of a long inter-block interval. But first we look at just how
much scaling advantage we can extract out of the time-warp
bug on the compatibility chain.

VIII. THE HIGH END OF SCALING LIMITS ON THE
COMPATIBILITY CHAIN

While the ability to increase the block rate must be limited
so as to constrain resource utilization in validators and
retain censorship resistance, which both together provide the
properties we care about and call decentralization, let’s set
this aside for just a moment and consider just what the limits
are of using time-warp to increase settlement capacity on
the compatibility chain. After establishing what the protocol-
allowed upper limits are, we will then look at whether these
limits would ever be reasonable, and ways in which the
forward block size and compatibility block interval can be
limited so as to preserve decentralization properties that we
care about in the interim.

Because a block’s timestamp is constrained to be larger
than the median timestamp of the 11 blocks prior, a sequence

of up to 6 blocks may share the same timestamp before
consensus rules require block-time to tick forward. Thus
there cannot be more than 6 blocks per second in expectation
before block time advances at a rate more quickly than actual
(wall clock) time, which becomes problematic as block time
is not allowed to exceed actual/wall clock time by more than
2 h at the tip.

At this maximum sustainable rate 14.4 GWe of transac-
tions could be processed in 3600 full compatibility blocks
every 10 min,16 with one compatibility block every 167 ms in
expectation. This is an effective 3600x transaction processing
rate increase and represents the actual hard limit allowed
by the bitcoin protocol, before this scaling approach would
break forward compatibility with older clients. Should this
limit be reached, the block timestamps of the compatibility
chain would be at least two weeks old and advancing by
one tick every six blocks, with each block arriving every
1⁄6th of a second in expectation. Every 2016 blocks, which
would occur every five and half minutes, normal difficulty
adjustment would be prevented by setting the timestamp to
be approximately the present wall-clock time, two weeks
later than the 2015th prior block timestamp. The next block
that follows returns to the pattern of block timestamps
increasing as slowly as possible.

In a Section X we will evaluate how ridiculous—or not—
this real upper limit is, whether it would ever be reasonable
to allow such upper limits to be reached, and by what
mechanism lower limits could be enforced in the interim.

IX. SHARDING ACROSS MULTIPLE FORWARD BLOCK
CHAINS

There’s a one-time win for decentralization that can be had
simultaneous with the deployment of forward blocks, and
that comes from sharding. By supporting multiple forward
block chains, or shards, higher total transaction processing
rates can be achieved for the same level of latency-induced
centralization risk.

The technique is to explicitly segment outputs into disjoint
UTXO sets for each shard, and to require that all inputs to a
transaction draw from a single shard. Outputs may explicitly
name a different shard that they belong to, but at the
cost of a delayed transfer and maturation process achieving
loose coupling of state between shards. The compatibility
block chain tracks the block headers of all shards, and add
transactions from each shard to the processing queue as the
shard’s forward blocks achieve N confirmations. When a
transaction in one shard has an output destined for a different
shard, the compatibility block chain adds that destination
and amount to the coinbase payout queue and claims the
output as part of the carry-forward balance. Once paid out
and mature, the coinbase payout enters the UTXO set of the
destination shard. The following rules define how outputs
enter the UTXO set of the forward block shards, becoming
spendable:

16600×6 = 3600 blocks × 4MWe
block = 14.4GWe

1) Each shard constitutes a disjoint ledger of value, with
a UTXO set that does not intersect with the UTXO
set of any other shard. As a consequence, transactions
must source all their inputs from the same shard.

2) All legacy outputs and non-prefixed segwit outputs
of a transaction belong to the shard that transaction
was confirmed in (the same shard it sourced its inputs
from), and are immediately spendable by later trans-
actions of the same shard.

3) A prefixed native segwit output in a user transaction
differs from a native segwit output in having a prefix
byte indicating its destination shard. Prefixed native
segwit outputs do not enter the UTXO set of any
forward block shard.

4) As transactions are added to the transaction processing
queue of the compatibility chain, any prefixed native
segwit outputs in the transactions of that forward block
are added to the coinbase payout queue.

5) When a transaction is processed from the queue and
included in a compatibility block, the prefixed seg-
wit output is spent by a miner-generated transaction
within the same block, and its value is added to the
carry-forward balance used to process items from the
coinbase payout queue.

6) A prefixed native segwit output in the coinbase trans-
action of a compatibility block becomes spendable in
the shard specified by its prefix, and that shard only,
through the normal process of maturation. Any legacy
or non-prefixed native segwit coinbase outputs mature
into the default, first shard.

As a prefix we recommend using a single-byte script
opcode, for efficiency. There are a total of 28 single-byte
script opcodes which may be safely executed at the beginning
of a scriptPubKey context: 1NEGATE, FALSE, TRUE, the
remaining 15 small number pushes (2 to 16), NOP, NOP1,
NOP4 through NOP10, and DEPTH. CODESEPARATOR
could be used but is excluded from this list due to potential
infrastructure screwups relating to its other, complicated
semantics. Table I enumerates these shard prefixes in order.

Any user transaction output consisting of one of these
prefixes followed by normal native segwit output script (a
0 to 16 small integer push followed by a small data push)
is called a prefixed native segwit output, and follows the
process of coinbase maturation detailed above. A coinbase
payout of this form enters the UTXO set of the specified
shard upon maturation, and can be spent within that shard
exactly as if it were a native segwit script without the prefix.

Without complicating the prefix scheme further, the num-
ber of shards is limited by the number of prefix bytes
available, which is a historical artifact of bitcoin script. As
it happens however, the number of one-byte prefixes which
can be safely executed at the beginning of a push-only script
does align rather closely with the number of shards which
can be safely allowed given other design constraints.

17In Tradecraft, NOP2 and NOP3 are also used for a total of 30 shards.

TABLE I
SHARD PREFIXES

Shard Prefix Opcode

1 0x00 FALSE
2 0x4f 1NEGATE
3 0x51 TRUE
4 0x52 2
5 0x53 3
6 0x54 4
7 0x55 5
8 0x56 6
9 0x57 7

10 0x58 8
11 0x59 9
12 0x5a 10
13 0x5b 11
14 0x5c 12
15 0x5d 13
16 0x5e 14
17 0x5f 15
18 0x60 16
19 0x61 NOP
20 0x74 DEPTH
21 0xb0 NOP1
22 0xb3 NOP417

23 0xb4 NOP5
24 0xb5 NOP6
25 0xb6 NOP7
26 0xb7 NOP8
27 0xb8 NOP9
28 0xb9 NOP10

A. The Impact of Sharding on Centralization Risks

The maximum forward block size limits discussed pre-
viously of 14.4 GWe / 10 min are far in excess of what
could be supported by any presently imaginable network
architecture: the centralization pressures would destroy the
utility of the network, even with generous assumptions about
future bandwidth and latency numbers.

But by allowing some complexity to be pushed onto the
user in the form of sharding, we can make full utilization of
the available capacity of a time-warped compatibility block
chain without growing individual forward block shard chains
to be in excess of the upper limits of previous conservative
block size increase proposals, such as BIP-103.

Increasing the effective transaction processing rate through
sharding proportionally increases the cost of validation for
full nodes. For lightweight clients, resources are only in-
creased in proportion to the number of shards they have
outputs on or are watching for payments.

However increasing the effective transaction processing
rate through sharding does not increase latency-dependent
censorship risks, at least while the number of shards remains
within reasonable limits. Each shard is its own long-interval
forward block chain operating independently of the other
shards, with a separately salted proof of work and a loosely-
coupled value transfer process across shards. The separate
and salted proof-of-work requirement ensures that there is
no correlation between when blocks are found on different
shards. The coinbase maturation period ensures that the state
of one shard has no low-latency dependencies on the state of
any other shard. Together these prevent the introduction of

centralizing mining incentives from the transaction weight of
other shards, preventing a decrease in censorship resistance,
but only so long as the time it takes to validate a shard
remains significantly less than the expected time between any
shard block being found. 28 shards, with each shard having
a 15 min inter-block time would have shards arriving every
∼ 32s in expectation on bitcoin, every 30 s on Tradecraft.
On the assumption that individual blocks should not take
more than a handful of seconds per block to validate in
the worst case, this provides ample room even in the face
of mining variance, the flex cap, and adversarial blocks
to ensure that multiple blocks arriving simultaneously (and
therefore impacting each others’ validation time) is not the
norm.

X. RECOMMENDED FORWARD SHARD WEIGHT LIMITS
AND FLEXCAP PARAMETERS

In this section we lay out the suggested initial settings and
growth limits for sharding and the per-shard flexible weight
limit in bitcoin:

1) The forward block chain is split into 28 shards with
separate UTXO sets, for a 28x increase in censorship
resistance if fully utilized.

2) All forward shard chains have a fixed target inter-block
interval of 15 min, for an additional few percentage
points of censorship resistance.

3) At the point of activation, the initial maximum weight
per block w0 of the first/default forward shard chain is
6 MWe, and 25 kWe each for the other 27 remaining
shards.

4) Simultaneously with activation, a previously implicit
maximum transaction weight is imposed with a limit
value very close to the original chain’s maximum
weight limit: 3.975×106 We. The presently lower
policy limit still applies, but transactions larger than
3.975 MWe are now invalid, not just non-standard.

The per-shard target inter-block interval of 15 min implies
a new block from a randomly selected shard chain arriving
every ∼ 32s or so, which provides a total aggregate transac-
tion processing rate of 4.45 MWe every 10 min, only 11.25%
more than the original maximum block weight.

This configuration of the flexible block weight limit sets
an initial limit on the first shard chain that provides a
transaction processing throughput equivalent to the original
chain, and therefore starts with exactly the same validation
costs as all UTXO exist in that shard initially, and with
approximately the same censorship resistance. The other
shard chains provide an additional 11.25% of block space,
but user adoption of this space is likely to take time as wallets
and other infrastructure are adapted, just as was the case with
segwit.

Once sharding is fully utilized, a censorship resistance will
be improved by a factor equivalent to having reduced the
original max block weight by ∼ 30x.

5) Using a flexible cap, the miner is allowed to grow
or shrink by up to ±25% the maximum weight of

their own forward shard blocks, receiving less (when
growing) or more (when shrinking) block reward as a
result, a tradeoff they would only make in response to
abnormally high or low clearing fee rates.

6) Every 2016 blocks (a three week period) each shard
chain will add to its baseline maximum weight 3.125%
(1⁄32) of the difference from the previous baseline
limit to the trailing average of the actual last 2016
block’s weight limits, as were adjusted by the flex
cap, constrained to be no smaller than 25 kWe and no
larger than 768 MWe. Thus an adjustment of no more
than 1.0078125x in either direction is possible per
adjustment period, resulting in a maximum adjustment
of around ±14.5 %/yr.

Should every shard chain adjust in response to real usage
to its maximum allowed size of 768 MWe, the total transac-
tion processing throughput on the forward block shard chains
taken together would be 28×768MWe = 21.504GWe every
15 min, or expressed as a more conventional rate 14.336 GWe
every 10 min which very nearly equals the maximum allowed
throughput on the compatibility chain when fully exploiting
the time-warp feature. However it would take consistent max-
imum upwards adjustments every period for half a century
to reach this limit, and given the quadratic costs to raising
the flexcap, probably much longer.

A. How Reasonable Is This Upper Bound, Really?

It is not inconceivable that ongoing network and validator
improvements will permit a growth in the decades and
centuries to come of the order of magnitude required, 7.5 to
12 doublings of compute resources, storage, and bandwidth
to safely reach the maximum throughput of 14.336 GWe
every 10 min, assuming today’s 4 MWe limit as the present-
day “safe” baseline. It is worth noting that even in this
extreme the corresponding per-shard weight limits would
be less than the maximum limits allowed by conservative
block size increase proposals such as BIP-103 over the same
timeframes.

768 MWe per 15 min shard-block is “only” 192x the post-
segwit weight limit of 4 MWe per 10 min block—about 7.5
doublings. Hitting this limit would require new 4MWe com-
patibility blocks generated every 167 ms, fed from a queue
of transactions generated by 28 loosely coupled shards, for
a total of 21.504 GWe every 900 s / 15 min. Staying up
to date with such a block chain would require 240 Mbps
downlink, and participating as a relay node would require an
approximate 4x multiple thereof, or around 1 Gbps.18 Costs
to validators would be 3584x present-day costs, or just under
12 doublings.

While a lot, and certainly outside of current capabilities,
this is not so crazily outside the realm of possibility as it
might seem when we consider what generations of technolo-
gies might exist into the foreseeable future:
• Mature graphene transistors, among many possible tech-

nological pathways, could provide consumer electronics

181 download, and 3 uploads per transaction.

with many orders of magnitude more performance for
the same power and heat dissipation, allowing continued
increase in the computational capacity available within
consumer form factors (e.g. laptops & desktop work-
stations), and make possible large storage density non-
volatile memory to remove I/O bottlenecks.

• Better electro-optical interconnects would allow existing
deployed fiber optic cables to carry orders of magnitude
more information, allowing for higher last-mile band-
width and transfer caps from consumer internet services,
allowing both wired connections and WiFi be linked
with 1 Gbps or faster WAN connections.

• Mobile data is unlikely to advance as far (due to spec-
trum scarcity), but the broadcast nature of block chain
data means that the partially-trusted solution of satellite
or terrestrial radio broadcast could be used for block
distribution to fully validating block-only mobile clients.
240 Mbps for absolutely full blocks is only about 12
HDTV channels, meaning there is sufficient spectrum
available today for multiple operators to redundantly
broadcast block data of that size. Mobile clients would
only require a lower bandwidth bidirectional connection
(3G or better) to broadcast their transactions.

Looking at the flip side of demand, 28× 768MWe =
21.504GWe/15min is 2.064 TWe per day in transaction
processing capability, or about 1 to 2TB/d of block chain
data. Although a lot of data by any reasonable measurement,
it’s still only about 1 transaction per day for every human
being presently alive, to say nothing of future populations
in the cis-lunar light sphere. For payments this would seem
to be more than enough as only rebalancing transactions of
payment channels are needed at a frequency of a month or
so. But:

• The napkin-math calculation of ∼ 1tx/day/pp is an
average, whereas the need to rebalance less frequently
is a statement of the median. We should expect the
need for block chain access to follow a power law
distribution, which very well could push the necessary
average much higher than the median value, as the
median is more reflective of the long tail of casual use
than the peak of businesses and services that make much
higher use of the block chain as a settlement platform.

• Focusing on payments is myopic as what bitcoin pro-
vides is the first, and so far only platform for fully
automated trustless dispute resolution. Payments are
only the simplest form of what we might call bitcoin-
compatible smart contracts that use bitcoin or other
crypto tokens as collateral and UTXOs as semaphore
primitives in the coordination of the actions of multiple
real-world parties with respect to some pre-arranged
contract. While it is possible that multiple contracts
can be handled with a single pot of funds managed
by a multi-party off-chain protocol—as is the case with
lightning—there is an efficiency tradeoff to be made and
access to the chain is eventually required, always.

In this light, it is entirely possible that 1tx/day/pp is below

the needs of what true global adoption would require for a
block chain that handles all forms of automated commercial
dispute resolution, not just consumer payments. However it
is the limit of what can be achieved as a fully forwards
compatible soft-fork in which all nodes see all transactions.

We contend then that these maximum limits are within
the realm of reasonable demand in the circumstance of
total world adoption, while also within the limits of what
foreseeable technology might enable within the decades it
would take, even optimistically, to get there. In the mean
time an appropriately configured flexible cap ensures that
a lower limit is maintained until such time in the future
as there is real, paid-for, non-transient demand for that
much block space, ensuring in the process that block size
increases cannot be used as a way of avoiding transaction
fees. Furthermore, a reasonable flex cap proposal, as we have
laid out here, would make sure that increases happen slowly
enough that collective user action could impose a lower limit
if it were seen as being being prematurely raised.

XI. EXTENSION OUTPUTS: GENERALIZING THE
COINBASE PAYOUT QUEUE FOR FUTURE PROTOCOL

ADDITIONS

So far we’ve considered a unified coinbase payout queue
for the purpose of coordinating the distribution of block
rewards among the old-PoW and new-PoW miners, and for
state synchronization between shards. However the mecha-
nism serves as a general solution to the problem of transfer-
ring value between various ledger extensions, almost without
modification.

The coinbase payout queue is useful anytime discrete
accounting systems are used for maintaining a ledger of value
within the same block chain. As examples:
• Splitting the block chain into multiple shards, with

transfers between shards requiring coordination via ex-
plicit transfers, as already seen;

• Obscuring transaction value via confidential transactions
(with or without mimblewimble kernel support);

• Obscuring the transaction graph via support of ring
signature or zero-knowledge spends; or

• Transferring value between multiple sidechains via a
two-way peg mechanism.

Coinbase payout queues are also useful for any circum-
stance where the value or other detail of an output depends on
the circumstances of how the enclosing transaction is mined,
and therefore a maturation process is required to prevent the
fungibility risk that comes with allowing transactions that
can be invalidated with a reorg. Examples from this problem
domain include:
• Block reward for forward and compatibility block min-

ers, as already seen;
• A rebatable fee market where excess fee beyond the

clearing fee rate is returned to the transaction author;
or

• Transaction expiry, or other mechanisms by which a
transaction may become permanently invalid for some
reason other than a reorg and double-spend.

Neither of these are meant as an exhaustive list! There
are so many applications of coinbase payout queues as a
maturation process that we cannot include them all, and
the above should be treated as merely a list of interesting
and/or relevant contemporary proposals, some of which will
be elaborated on in the remainder of this talk.

We briefly lay out the mechanism of generalization, first
for segregated ledgers:

1) Permit the locking up of funds by sending coins to
“anyone can spend” script identifying the destination
ledger and endpoint. The value is added to a running
total identifying the total coinage tracked by the ledger,
and the funds are immediately available at the end-
point, within the segregated environment.

2) The “anyone can spend” output paying into the ledger
is claimed by the miner who creates the block con-
taining the transaction, with the coinage added to the
carry-forward balance used for coinbase payouts.

3) At a later point in time, any owner of funds on the
segregated ledger can authorize a withdrawal, and in
doing so specify the destination/recipient. The amount
is subtracted from the running balance of funds on the
segregated ledger, and an output of the specified size
and intended recipient is added to the coinbase payout
queue.

For transaction outputs subject to maturation, the process
is even simpler:

1) The funds are sent to an “anyone can spend” script
identifying the type of output and intended recipi-
ent/destination script.

2) The miner who includes the transaction in their block
spends the output, adding the funds to the carry-
forward balance, and adds an equal valued output19

to the end of the coinbase payout queue.

The output arrives in the hands of its intended recipient,
in the intended ledger, via the usual process of coinbase
maturation.

We will make this abstract process more concrete with
a number of examples drawn from protocol extensions that
could be deployed in the very near future.

A. Rebatable Fees and a Consensus-Visible Fee Market

In this proposal any user transaction may contain one
or more explicit rebatable fee outputs. A rebatable fee
output has a non-zero explicit value and a scriptPubKey
containing a single data-push. The data push consists of a
weight value serialized as a variable-length 32-bit integer,
followed by the fee rebate script verbatim.

The last transaction of a compatibility block is already
granted special semantics: it is the location of the carry-
forward balance which holds aggregated funds for future
coinbase payouts. We now grant it further special semantics:

19The output has the same value, but with a scriptPubKey stripped
of its extra-protocol components.

1) Rebatable fee outputs do not enter the UTXO set of the
forward block (or shard) chain. They are not spendable
by other user transactions.

2) The last transaction of a compatibility block must
spend every rebatable fee output in that block, with
the amount added to the carry-forward balance.

3) The committed total weight of a forward block must be
greater than or equal to both (1) the actual weight of the
block under known consensus rules; and (2) the sum
of the serialized weights of all rebatable fee outputs in
that block.

4) The clearing fee rate of a forward block is defined to
be equal to the sum of all fees (implicit or rebatable)
divided by the declared weight of the block.

5) For each rebatable fee output an excess value is
calculated, equal to the value of the output minus its
serialized weight times the clearing rate. A consensus-
critical dust heuristic is performed to see if the excess
fee would be considered spendable in the same block
without lowering the clearing fee rate, and depending
on the result:

a) If the excess value is insufficient to be profitably
spent the excess is implicitly added to the trans-
action fees of the block, and split between the
forward block and compatibility block miners as
per the current value of P.

b) Otherwise the forward block coinbase is re-
quired to pay out the excess to the serialized
scriptPubKey encoded in the rebatable fee
output.

This achieves the soft-fork compatible rebatable fee &
incentive-safe fee market described to the bitcoin-dev mail-
ing list [1] and based off an earlier hard-fork fee market
proposal [2].

It also shares a lot of the necessary ground work infras-
tructure for forward blocks, even if it may seem unrelated,
making a rebatable fee market a very small addition on top
of forward blocks.

B. Confidential Transactions and Mimblewimble

Confidential transactions is a scheme where the explicit
nValue amount of an output is replaced by a Pedersen
commitment, thereby obscuring the value to anyone who
does not possess the blinding factor. This allows for selective
disclosure of transaction amounts while maintaining bitcoin’s
non-inflation guarantees.

Mimblewimble is an application of confidential transac-
tions in which the scriptPubKey is not used and therefore
knowledge of the blinding factor of an output serves as
authorization of a spend. Removing explicit authorization
scripts prevents selective disclosure, but gained instead are
the efficiency and privacy improvements of transaction cut-
through and aggregation.

Bringing confidential transactions and mimblewimble
to bitcoin requires (1) adding the necessary fields—
Pedersen commitments, ECDH half-protocol nonces, and
rangeproofs—to the transaction output data structure; (2) a

mechanism for locking up a pool of funds backing the total
value of all confidential outputs; and (3) the validation rules
to enforce the above.

The transaction output data structure is most easily ex-
tended by adding a hash of the extra fields to the end of the
scriptPubKey. For compatibility with future soft-forks,
a general mechanism developed such that a native segwit
output is allowed up to eight data additional data pushes
(although typically only 1 to 3 are used), together called
the suffix, with the last being a required-minimal serialized
integer value specifying the extended output version.

The version corresponding with a confidential transaction
output consists specifies an intervening data value consisting
of a single 32 B SHA256 hash of the Pedersen commitment
and ECDH nonce. The rangeproof is placed within the
output’s witness data structure.20 The nValue of the output
is 0 btc.

To move coins into a confidential output, the user makes an
“anyone can spend” output containing the transferred value
and, in an extended output field, a code indicating this is
a transfer into the confidential transactions / mimblewimble
ledger and a Pedersen commitment of its value (with the
necessary signature of the nonce to prove it in the witness
structure). The output is spent by the compatibility miner
and added to the carry-forward balance, while within the
transaction accounting a confidential “input” of the same
amount is added. The transaction author, being the only
one who knows the nonce of the implicit input, creates
confidential outputs claiming it.

Within the confidential ledger, extended outputs can be
spent as inputs and new outputs created freely so long as the
Pedersen commitments sum correctly in each transaction.

Three mechanisms can be provided by which confidential
coins can be converted back into explicit coins:

1) An explicit fee can be provided in the form of a
“provably unspendable” output with an extended field
specifying how much coinage should be added to the
output side of the Pedersen commitment sum. The
value is treated the same as an implicit fee would be.

2) A confidential to explicit conversion can be performed
by including a “provably unspendable” output with
extended data fields specifying the amount and des-
tination. Upon achieving locked-in status, an explicit
output of that amount and to the specified destination
is added to the coinbase payout queue.

3) A rebatable confidential fee combines both of the
above categories by providing an explicit amount that
is counted against the confidential outputs side of the
Pedersen commitment sum, and a return script to
which any excess funds should be sent. It is treated

20Outputs need to be given witnesses in most of these schemes. It would
be a simple matter to add an output witness structure whose root hash was
also committed somewhere in the block, e.g. the “witness nonce” of segwit.

as a rebatable fee described in Section XI-A.21

Moving from confidential to explicit value requires use of
the coinbase payout queue because the carry-forward balance
that is where the locked up coinage backing the confidential
value resides. If the user cannot wait for coinbase maturation,
they can find another user willing to trustlessly front the
money by signing an explicit input that covers the amount,
minus their service fee, and a confidential to explicit payout
to themselves.

C. Unlinkable Anonymous Spend Ledgers

Zcash demonstrates how a zk-SNARK can be used to prove
a spend is from an ever growing set of historical anonymous
outputs and that the output has never been spent before,
but without revealing which output it was. Bulletproofs
enable similar constructs with only elliptic curve discrete
log assumptions, albeit with higher validation cost. Monero
achieves a weaker property using ring signatures to prove
that an input was one of N explicitly enumerated previous
inputs, thereby gaining efficiency at the cost of a reduced
anonymity set.

Any of the above approaches could be deployed in a
similar manner to confidential transactions discussed in Sec-
tion XI-B:

1) An anonymous output is a zero-nValue “provably un-
spendable” output containing some sort of commitment
to its actual value.

2) Anonymous outputs are tracked with their own ledger:
a) Creating an anonymous output requires a transfer

in which sends explicit value to an “anyone can
spend” output claimed in a compatibility block
and added to the carry-forward balance.

b) A “transfer out” requires some input from the
same ledger and specification of the destination,
which is added to the coinbase payout queue
when the transfer out is locked in.

c) Some mechanism exists for paying explicit or
rebatable fees from the ledger, reducing coins
available to outputs of the same ledger.

3) Spending an anonymous output requires keeping some
amount of information available forever, to prevent
double-spends. Data storage on validators can be
avoided by using a Merkle tree updated on each spend.

4) The actual spend is not an input, as that would re-
quire specifying an input which defeats the purpose.
Instead, it is a zero-nValue “output” whose witness
provides the spend authorization, and the committed
value pulled from the output witness is added on the
input side of the anonymous spend ledger.

Which anonymous spend mechanism to use and the format
of its spend authorization witness we leave up to debate; our

21It would be possible to support returning funds as a “confidential”
Pedersen commitment, by providing the EC point corresponding to the
blinding factor, but (1) such an output would not be confidential in any
meaningful sense as its value would be determined by consensus; and (2)
this wouldn’t save any block chain space over the alternative of having the
user aggregate return fee excess into confidential outputs themselves.

concern here is with the block chain ledger accounting and
ledger transfer mechanisms.

D. Sidechains and the two-way peg

For this topic we avoid the issue of which validator-
enforced sidechain architecture should be used—whether the
SPV peg, Drivechains, or something else. Regardless of the
transfer authorization scheme the accounting mechanism is
the same:

1) A sidechain transfer is an “anyone can spend” output
which is claimed by the compatibility block miner
and added to the carry-forward balance, and which
commits to the sidechain identifier and destination
script to receive the funds on the other chain.

2) A return-peg transfer is an “provably unspendable”
output which commits to the amount and destination
of the funds, and whose witness provides the necessary
sidechain information to validate the return peg. Once
locked-in, the return peg is added to the coinbase
payout queue.

By now it should be clear that all of these extended-
ledger mechanisms share the same common approach, using
the carry-forward balance and coinbase payout queue to
manage transfers in and out, and extra data pushes in the
scriptPubKey to store extended transaction output fields.

XII. CONCLUSION

We demonstrated that the idea of forward blocks provides
a unifying mechanism that:
• Provides on-chain settlement scaling of up to 3584x

current limits as a soft-fork;
• Provides for an (optional) proof-of-work upgrade as a

soft fork;
• Limits growth of validation costs with a flexible weight

limit;
• Decreases centralization risks through the adoption of

sharding; and
• Provides a framework for ledger accounting in future

protocol extensions including but not limited to:
– A rebatable fee market with consensus-determined

transaction clearing fee rates;
– Confidential transactions for obscuring transaction

amounts;
– Mimblewimble, ring signatures, or anonymous

spends for obscuring the spend graph; and
– Sidechain value-transfer mechanisms.

While there are many moving parts to this proposal, it
is not beyond the level of complexity of prior extensions
adopted by bitcoin (e.g. segregated witness), and achieves a
variety of benefits comparable in magnitude.

REFERENCES

[1] Mark Friedenbach. Rebatable fees & incentive-safe fee markets. Bitcoin
Protocol Discussion https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2017-September/015093.
html. 29 September 2017.

[2] Ron Lavi, Or Sattath, and Aviv Zohar. Redesigning bitcoin’s fee market.
CoRR, abs/1709.08881, 2017.

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-September/015093.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-September/015093.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-September/015093.html

	Introduction
	Centralization Risks of Larger Settlement Throughput
	Changing Proof-of-Work as a Soft-Fork via a Dual-PoW Difficulty Transition
	Merge Mining Is Also a No-Op Proof-of-Work Upgrade

	Loosely-Coupled Chain Dependency via ``Forward Blocks''
	Using a ``Forced Hard-Fork'' To Change Work Functions
	Preventing Double Spends with a Transaction Queue
	Coinbase Confirmation on the Forward Block Chain

	Managing the Shared Coinbase Payout Queue
	A Smooth Difficulty Transition Between Proof-of-Work Functions
	Smoothing Out Bitcoin's Subsidy Schedule

	Increasing the Block Weight Limit with a Flexible Cap and a Flux Capacitor
	Initial Parameters of the Forward Block Chain
	A Flexible Cap on Forward Block Weight
	Processing Larger Blocks on the Compatibility Chain via a Coordinated Time-Warp
	The Centralization Risks of a Flexible Weight Limit

	The High End of Scaling Limits on the Compatibility Chain
	Sharding across Multiple Forward Block Chains
	The Impact of Sharding on Centralization Risks

	Recommended Forward Shard Weight Limits and Flexcap Parameters
	How Reasonable Is This Upper Bound, Really?

	Extension Outputs: Generalizing the Coinbase Payout Queue for Future Protocol Additions
	Rebatable Fees and a Consensus-Visible Fee Market
	Confidential Transactions and Mimblewimble
	Unlinkable Anonymous Spend Ledgers
	Sidechains and the two-way peg

	Conclusion
	References

